4 research outputs found

    Metal-free catalysis using boron-based systems : from designed frustrated Lewis Pairs to boranes

    Get PDF
    La catalyse est la pierre angulaire de la chimie verte et elle permet de performer des transformations chimiques difficiles de maniĂšre efficace et sĂ©lective. Au niveau industriel, l'utilisation de la catalyse se traduit habituellement en une Ă©conomie de temps et d'argent. Le dĂ©veloppement de systĂšmes catalytiques pratiques s'est initialement fait Ă  l'aide de mĂ©taux des secondes et troisiĂšmes rangĂ©es de transition. Au cours des deux derniĂšres dĂ©cennies, ce domaine de recherche a atteint une certaine maturitĂ©. NĂ©anmoins, les catalyseurs Ă  base de mĂ©taux de transitions sont souvent dispendieux et polluants. Une quantitĂ© considĂ©rable de gaz Ă  effet de serre est Ă©galement engendrĂ©e par l'extraction miniĂšre de ces mĂ©taux. Afin de palier Ă  ces problĂšmes, d'intĂ©ressantes alternatives commencent Ă  faire leur place. Notamment, de nouvelles stratĂ©gies de catalyse sans mĂ©tal de transition ont Ă©tĂ© dĂ©veloppĂ©es et l'Ă©tude des mĂ©canismes rĂ©actionnels nous permet de maximiser leur efficacitĂ©. Dans cette thĂšse, l'optimisation d'une paire de Lewis frustrĂ©e (FLP) de type aminoborane (1-NR₂-2-BH₂-C₆H₄) est explorĂ© afin d'amĂ©liorer ses performances dans la borylation catalytique de liens C-H de molĂ©cules hĂ©tĂ©roaromatiques (pyrroles, indoles, thiophĂšnes). Dans les premiers chapitres, le mĂ©canisme rĂ©actionnel de cette rĂ©action de borylation est Ă©tudiĂ© en dĂ©tail. Une premiĂšre Ă©tude thĂ©orique nous permet de dĂ©terminer l'impact de l'ajout d'un groupement fonctionnel en position ortho du -BH₂ sur l'activation du lien C-H. Par la suite, la performance d'aminoboranes possĂ©dant un encombrement stĂ©rique variĂ© au niveau de l'amine est testĂ©e pour la catalyse. Les rĂ©sultats obtenus combinĂ©s avec des Ă©tudes cinĂ©tiques dĂ©montrent que l'aminoborane possĂ©dant un groupement pipĂ©ridyl effectue la borylation catalytique jusqu'Ă  15 fois plus rapidement que l'espĂšce possĂ©dant le groupement le plus encombrĂ©e tetramĂ©thylpipĂ©ridyl. L'activation C-H est donc favorisĂ©e lorsque le site rĂ©actionnel est plus dĂ©gagĂ©. Pour complĂ©ter l'Ă©tude du mĂ©canisme de la borylation, nous avons Ă©galement Ă©tudiĂ© l'Ă©tape de la mĂ©tathĂšse des liens sigma, qui se rĂ©vĂšle ĂȘtre un Ă©lĂ©ment critique et important lors de la borylation du thiophĂšne. En explorant la rĂ©action de FLPs de type aminoborane, nous avons dĂ©couvert que l'acide borique pouvait agir comme prĂ©catalyseur pour l'hydroboration catalytique de composĂ©s insaturĂ©s. Cette espĂšce de bore peu dispendieuse et stable peut ĂȘtre utilisĂ©e comme prĂ©catalyseur remplaçant le BH₃ qui est une molĂ©cule trĂšs rĂ©active. Une Ă©tude mĂ©canistique Ă  l'aide de rĂ©actions stƓchiomĂ©triques et d'analyses cinĂ©tiques dĂ©montre que la rĂ©action d'hydroboration est plus rapide que la gĂ©nĂ©ration et la rĂ©gĂ©nĂ©ration du catalyseur. Finalement, un systĂšme catalytique Ă  base d'acide borique utilisant l'irradiation micro-ondes sans conditions inertes a donc Ă©tĂ© dĂ©veloppĂ© pour l'hydroboration d'esters et d'alcynes. Une derniĂšre Ă©tude portant sur la combinaison de deux types de chimie sans mĂ©tal, les FLPs et les phosphines biphiliques, vient clore le travail prĂ©sentĂ©. Nous avons explorĂ© deux stratĂ©gies pour Ă©valuer s'il est possible de gĂ©nĂ©rer une synergie avec les deux systĂšmes. Tout d'abord, nous avons adaptĂ© le ligand de la phosphine triamide P{N[o-NMe-C₆H₄]₂} pour y installer une base de Lewis intramolĂ©culaire. Des tests d'activation de l'hydrogĂšne gazeux avec la phosphine biphilique modifiĂ©e nous ont permis de rĂ©aliser qu'il n'est pas possible d'atteindre de la rĂ©activitĂ© FLP de cette maniĂšre. Nous avons ensuite dĂ©cidĂ© de mĂ©langer la phosphine biphilique P{N[o-NMe-C₆H₄]₂} avec l'aminoborane de type FLP le moins encombrĂ©e (1-NMe₂-2-BH₂-C₆H₄). L'objectif Ă©tait de produire un complexe sans mĂ©tal ayant une plateforme d'oxydorĂ©duction sur l'atome de phosphore et des orbitales vides et pleines fournies par l'acide de Lewis et la base de Lewis de l'aminoborane. Le complexe attendu n'est pas gĂ©nĂ©rĂ©. À la place de celui-ci, une rĂ©action entre les deux espĂšces produit le benzodiazaborole correspondant et un solide orangĂ© insoluble. À l'aide d'Ă©tudes comparatives, nous sommes venus Ă  la conclusion que le solide produit est un mĂ©lange de polymĂšres de phosphore polyhydrures et que la rĂ©action observĂ©e est caractĂ©ristique des aminophosphines possĂ©dant au moins un hydrogĂšne.Catalysis is the cornerstone of green chemistry, and it allows to perform efficient and selective transformations that are usually challenging to achieve. At the industrial level, catalysis usually offers time and cost-efficient processes. Initially, the development of practical catalysis was done using transition metals of the second and third rows. Over the last two decades, this field of research reached a certain level of maturity. However, the use of transition metal-based catalysts is generally expensive due to the costs associated with their production and their removal from final products. Additionally, a considerable amount of greenhouse gases is liberated during the mining processes of the metals. To overcome these problems, interesting alternatives are starting to appear. Notably new metal-free strategies have been developed and the study of the mechanism allows to maximize their efficiency. In this thesis, the optimisation of an aminoborane (1-NR₂-2-BH₂-C₆H₄) frustrated Lewis pair (FLP) is explored to improve its performance for the catalytic borylation of C-H bonds of heteroaromatic molecules (pyrroles, indoles, thiophenes). In the first chapters, the mechanism of this borylation reaction is thoroughly studied. First, a theoretical study allows us to evaluate the effect of adding a functional group in ortho position of the -BH₂ for the first reaction step of the catalytic cycle: C-H activation. Subsequently, the catalysis performance of aminoboranes with various steric hindrance were tested. These results combined with kinetic studies shows that the aminoborane with a piperidyl group can perform catalysis 15 times faster than the aminoborane with the most encumbered amino group tetramethylpiperidyl. Therefore, the C-H activation is favored when the reaction site is more accessible. To complete the mechanistic investigation of the borylation reaction, the sigma bond metathesis reaction step was also studied. We discovered that this step is a critical and important element for the borylation of thiophene. While screening the aminoborane FLPs reactivity, we discovered that boric acid could act as a precatalyst for the catalytic hydroboration of unsaturated compounds. This inexpensive and stable boron species can be used as a precatalyst to replace the very reactive BH₃. A mechanistic study done with stoichiometric reactions and kinetic analysis show that the hydroboration reaction is faster than the generation and the regeneration of the borane catalyst. Finally, a boric acid based catalytic system using microwave irradiation has been developed for the hydroboration of esters and alkynes. To conclude, a study on the combination of two metal-free strategies was done using FLPs and biphilic phosphines. We explored two strategies to evaluate if it is possible to generate a synergy with both systems. First, we installed an intramolecular Lewis base on the phosphine triamide P{N[o-NMe-C₆H₄]₂}. It was not possible to reach FLP reactivity when looking at hydrogen activation tests with the adapted biphilic phosphine. Following these results, we mixed the biphilic phosphine P{N[o-NMe-C₆H₄]₂} with the least sterically encumbered aminoborane FLP (1-NMe₂-2-BH₂-C₆H₄). The objective was to produce a metal-free complex with a redox platform on the phosphorus atom and with filled and vacant orbitals provided by the Lewis acid and the Lewis base of the aminoborane. Unfortunately, this complex was not generated. Instead, a reaction between the two species produced the corresponding benzodiazaborole and an insoluble orange solid. Using comparative studies, we concluded that the insoluble solid generated is a mixture of phosphorus polyhydride polymers and that the observed reaction is characteristic to aminophosphine bearing at least one hydrogen

    Bench-stable frustrated Lewis pair chemistry : fluoroborate salts as precatalysts for the C-H borylation of heteroarenes

    Get PDF
    While the organotrifluoroborate group is commonly used as a leaving group in cross-coupling reactions, we now show that their high stability can be used to protect the Lewis acidic moieties of frustrated Lewis pair catalysts. Indeed, the air and moisture-stable trifluoro- and difluoroborate derivatives of bulky (tetramethylpiperidino)benzene are shown to be conveniently converted to their dihydroborane analogue which is known to activate small molecules. An efficient synthesis route to these stable and convenient precatalysts, their deprotection chemistry and their benchtop use for the dehydrogenative borylation of heteroarenes is presented

    Spontaneous reduction of a hydroborane to generate a B-B single bond using a Lewis pair

    Get PDF
    The ansa‐aminohydroborane 1‐NMe2‐2‐(BH2)C6H4 crystallizes in an unprecedented type of dimer containing a B−H bond activated by one FLP moiety. Upon mild heating and without the use of any catalyst, this molecule liberates one equivalent of hydrogen to generate a diborane molecule. The synthesis and structural characterization of these new compounds, as well as the kinetic monitoring of the reaction and the DFT investigation of its mechanism, are reported

    Metal-free borylation of heteroarenes using ambiphilic aminoboranes : on the importance of sterics in frustrated lewis pair C-H bond activation

    Get PDF
    Two novel frustrated Lewis pair (FLP) aminoboranes, (1-Pip-2-BH2-C6H4)2 (2; Pip = piperidyl) and (1-NEt2-2-BH2-C6H4)2 (3; NEt2 = diethylamino), were synthesized and their structural features were elucidated both in solution and in the solid state. The reactivity of these species for the borylation of heteroarenes was investigated and compared to previously reported (1-TMP-2-BH2- C6H4)2 (1; TMP = tetramethylpiperidyl) and (1-NMe2-2-BH2-C6H4)2 (4; NMe2 = dimethylamino). It was shown that 2 and 3 are more active catalysts for the borylation of heteroarenes than the bulkier analogue 1. Kinetic studies and DFT calculations were performed with 1 and 2 to ascertain the influence of the amino group of this FLP-catalyzed transformation. The C-H activation step was found to be more facile with smaller amines at the expense of a more difficult dissociation of the dimeric species. The bench-stable fluoroborate salts of all catalysts (1F-4F) have been synthesized and tested for the borylation reaction. The new precatalysts 2F and 3F are showing higher reaction rates and yields for multi-gram scale syntheses
    corecore